The Århus Integral of Rational Homology 3-spheres Ii: Invariance and Universality
نویسندگان
چکیده
We continue the work started in [Å-I], and prove the invariance and universality in the class of finite type invariants of the object defined and motivated there, namely the Århus integral of rational homology 3-spheres. Our main tool in proving invariance is a translation scheme that translates statements in multi-variable calculus (Gaussian integration, integration by parts, etc.) to statements about diagrams. Using this scheme the straight-forward “philosophical” calculus-level proofs of [Å-I] become straight-forward honest diagram-level proofs here. The universality proof is standard and utilizes a simple “locality” property of the Kontsevich integral.
منابع مشابه
The Århus Integral of Rational Homology 3-spheres I: a Highly Non Trivial Flat Connection on S
Path integrals don’t really exist, but it is very useful to dream that they do exist, and figure out the consequences. Apart from describing much of the physical world as we now know it, these dreams also lead to some highly non-trivial mathematical theorems and theories. We argue that even though non-trivial flat connections on S don’t really exist, it is beneficial to dream that one exists (a...
متن کاملThe Århus Integral of Rational Homology 3-spheres Iii: the Relation with the Le-murakami-ohtsuki Invariant
Continuing the work started in [Å-I] and [Å-II], we prove the relationship between the Århus integral and the invariant Ω (henceforth called LMO) defined by T.Q.T. Le, J. Murakami and T. Ohtsuki in [LMO]. The basic reason for the relationship is that both constructions afford an interpretation as “integrated holonomies”. In the case of the Århus integral, this interpretation was the basis for e...
متن کاملThe Perturbative Invariants of Rational Homology 3-spheres Can Be Recovered from the Lmo Invariant the Perturbative Invariants of Rational Homology 3-spheres Can Be Recovered from the Lmo Invariant
We show that the perturbative g invariant of rational homology 3-spheres can be recovered from the LMO invariant for any simple Lie algebra g, i.e., the LMO invariant is universal among the perturbative invariants. This universality was conjectured in [25]. Since the perturbative invariants dominate the quantum invariants of integral homology 3-spheres [13, 14, 15], this implies that the LMO in...
متن کاملFloer Homology and Invariants of Homology Cobordism
By using surgery techniques, we compute Floer homology for certain classes of integral homology 3-spheres homology cobordant to zero. We prove that Floer homology is two-periodic for all these manifolds. Based on this fact, we introduce a new integer valued invariant of integral homology 3-spheres. Our computations suggest its homology cobordism invariance.
متن کاملOn Finite Type 3-manifold Invariants V: Rational Homology 3-spheres
We introduce a notion of nite type invariants of oriented rational homology 3-spheres. We show that the map to nite type invariants of integral homology 3-spheres is one-to-one and deduce that the space of nite type invari-ants of rational homology 3-spheres is a ltered commutative algebra with nite dimensional nonzero graded quotients only in degrees divisible by 3. We show that the Casson-Wal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997